
Appendix B for “Political Selection and Persistence of Bad Gov-
ernments”: Omitted Proofs (Not for Publication)

Proof of Theorem 2. Part 1. We prove the statement for the case l = 0. The case l ≥ 1 is

covered by Part 2 of the theorem.

To obtain a contradiction, suppose that there is a cycle; this implies that so that there

are q ≥ 2 different governments H1, . . . ,Hq such that φ (Hj) = Hj+1 for all 1 ≤ j < q, and

φ (Hq) = H1. Without loss of generality, let H1 be the least competent of these governments.

Take H = φ (H2) (if q > 2 then H = H3 and if q = 2 then H = H1). As φ is a political

equilibrium, Vi (H) > Vi (H2) holds for a winning coalition in H2. But winning coalitions are

the same for all governments, so Vi (H) > Vi (H2) holds for a winning coalition in H1. Moreover,

by Assumption 1, Vi (H) > wi (H1) / (1− β) for all players except, perhaps, members of H1 (as

H1 is the least competent government). However, the existence of such alternative H contradicts

that φ is a political equilibrium, as the condition (ii) of Definition 1 is violated for government

H1. This contradiction completes the proof.

Part 2. Suppose to obtain a contradiction that there is a cycle, so that there are q ≥ 2

different governments H1, . . . ,Hq such that φ (Hj) = Hj+1 for all 1 ≤ j < q, and φ (Hq) = H1.

Without loss of generality, let H1 be the most competent of these governments. Take any

i ∈ H1. In that case, Vi (H1) > Vi (H2), as player i gets the highest utility under H1 (formally,

we have Vi (H2) < wi (H1) / (1− β) as H1 is i’s most preferred government in the cycle, hence

wi (H1) + βVi (H2) > Vi (H2), which means Vi (H1) > Vi (H2)). Since this holds for all members

of H1 and lH1 ≥ 1, it is impossible that for a winning coalition of players in H1 the condition

Vi (H2) > Vi (H1) is satisfied. This contradiction completes the proof.

Part 3. Suppose to obtain a contradiction that the statement does not hold. As the

number of mappings G → G is finite, there exists mapping φ which forms a cyclic political
equilibrium for β arbitrarily close to 1. Moreover, since the number of coalitions is finite, we

can only consider β in which φ is supported by the same coalitions in players. Let H1, . . . ,Hq

with q ≥ 2 satisfy φ (Hj) = Hj+1 for all 1 ≤ j < q and φ (Hq) = H1, so that the sequence

constitutes a cycle for φ. This means, in particular, that for anyG ∈ {H1, . . . ,Hq}, the inequality
Vi (φ (G) | φ, β) > Vi (G | φ, β) is satisfied for the same winning coalition of players for some β

arbitrarily close to 1. As this inequality is equivalent to wi (G) < (1− β)Vi (φ (G) | φ, β), we

must have (by taking the limit as β → 1) that

wi (G) ≤ ui ≡
1

q

q∑
p=1

wi (Hp) ,

where the last the quality defines ui.

Without loss of generality, suppose that H2 is the least competent of the governments in the
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cycle. Consider first the case q = 2. We must have that

wi (H1) ≤ wi (H1) + wi (H2)

2
,

and hence wi (H1) ≤ wi (H2), for a winning coalition of players in H1. However, only members

of H2 may satisfy these inequalities, and their number is less than mH1 . We get an immediate

contradiction.

Consider now the more complicated case q ≥ 3. In this case, H1, H2, H3 are three different

governments. We take H = H3 and show that the condition (ii) of Definition 1 is violated

for current government H1 and alternative H = H3. In particular, we need to check that the

following two conditions are satisfied:

(1) Vi (H3) > Vi (H2) for a winning coalition of players. Note that this is equivalent to

wi (H2) < Vi (H3). The latter is satisfied for suffi ciently large β provided that wi (H2) < ui.

This last inequality holds for all players except, perhaps, members of H2, i.e., for at least mH1

of them. Therefore, we just have to prove that wi (H2) < ui for at least lH1 members of H1.

However, we know that wi (H1) ≤ ui for at least lH1 members of H1. Moreover, since they

belong to H1 and ΓH2 < ΓH1 , we must have that wi (H2) < wi (H1) by Assumption 1 for each

of these players. But this immediately implies wi (H2) < ui.

(2) Vi (H3) > wi (H1) / (1− β) for a winning coalition of players. Suppose not; then there

must exist player i such that (1− β)Vi (H3) ≤ wi (H1) < (1− β)Vi (H2) (since the latter in-

equality holds for a winning coalition of players). Taking the limit, we get ui ≤ wi (H1) ≤ ui,

and hence wi (H1) = ui. However, this contradicts the assumption.

Consequently, we have described H = H3 for which the condition (ii) of Definition 1 is

violated. This contradiction completes the proof.

Part 4. The proof of this part follows the proof of Part 3, except the steps involved in

checking the condition Vi (H3) > wi (H1) / (1− β) for a winning coalition of players (indeed,

it is only in this step that the assumption in Part 3 was used). To check that last condition,

again suppose that it did not hold. Then there must exist player i such that (1− β)Vi (H3) ≤
wi (H1) < (1− β)Vi (H2) (since the latter inequality holds for a winning coalition of players).

Taking the limit, we get ui ≤ wi (H1) ≤ ui, and hence wi (H1) = ui. Given the assumption,

this is only possible if player i is either a member of all governments H1, . . . ,Hq or a member

of none of them (otherwise wi (H1) > ui if i ∈ H1 and wi (H1) < ui if i /∈ H1). In both cases,

wi (H2) < wi (H1), and thus wi (H2) < ui. But then Vi (H3) > Vi (H2) if β is suffi ciently close

to 1, establishing a contradiction. This contradiction completes the proof. �

Proof of Proposition 1. Part 1. Suppose, to obtain a contradiction, that |G ∩H| ≥ l,

but G 6= H. By Assumption 3 we need to have γG < γH or γG > γH ; without loss of generality,
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assume the former. Then H � G by Lemma 1, since |G ∩H| ≥ l. Note that G = Gq for some

q and H = Gj for some j such that j < q. Since H is stable, φ (Gj) = Gj , but then Mq 6= ∅
by (5), and so φ (Gq) 6= Gq, as follows from (6). However, this contradicts the hypothesis that

Gq = G ∈ D, and thus completes the proof.
Part 2. By definition of mapping φ, φ (G1) = G1, so G1 ∈ D. Take any government G ∈ D;

since |G ∩G1| ≥ 0 = l, we have G = G1 by part 1. Consequently, D = {G1}, so D is a singleton.
Now, for any G, φ (G) ∈ D, and thus φ (G) = G1.

Part 3. As before, the most competent government, G1, is stable, i.e. G1 ∈ D. Now consider
the set of governments which intersect with G1 by fewer than l members:

B = {G ∈ G : |G ∩G1| < l} .

This set is non-empty, because n > 2k implies that there exists a government which does not

intersect with G1; obviously, it is in B. Now take the most competent government from B, Gj
where

j = min {q : 1 ≤ q ≤ |G| and Gq ∈ B} .

We have Gj 6= G1, because G1 /∈ B. Let us show that Gj is stable. Note that any government
Gq such that γGq > γGj does not belong to B and therefore has at least l common members with
stable government G1. Hence, φ (Gq) = G1 (see (6)), and therefore Gq is unstable, except for

the case q = 1. Now we observe that setMj is empty: for each government Gq with 1 < q ≤ j

either the first condition in (8) is violated (if q = 1) or the second one (otherwise). But this

implies that φ (Gj) = Gj , so Gj is stable. This proves that if l ≥ 1, D contains at least two

elements. Finally, note that this boundary is achieved: for example, if l = 1 and n < 3k.

Part 4. If l = k, then for any Gq ∈ G, it is impossible that H � Gq for some alternative

H 6= Gq, as there will exist player i ∈ Gq \ H for whom wi (H) < wi (Gq). Hence, Mq = ∅
for all q, and thus φ (Gq) = Gq by (6). Consequently, D = G, and this completes the proof of
Proposition 1. �

Proof of Proposition 2. Part 1. We prove the more general part 2, then the statement

of part 1 will be a corollary: to obtain (11), one only needs to substitute x = k into (12).

Part 2. Let us prove the existence of such stable government. Define a set-valued function

χ : Cl → Ck−l ∪ {∅} by

χ (S) =

{
G \ S if G ∈ D and S ⊂ G;
∅ if there exists no G ∈ D such that S ⊂ G. (B1)

In words, for any coalition of l individuals, function χ assigns a coalition of k − l individuals
such that their union is a stable government whenever such other coalition exists or an empty

set when it does not exist. Note that χ (S) is a well defined single valued function: indeed, there
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cannot be two different stable governments G and H which contain S, for this would violate

Proposition 1 (part 1), as they intersect by at least l members from S.

Let Yl−1 be some coalition of l−1 individuals such thatX∩Yl−1 = ∅; denote these individuals
by i1, . . . , il−1. We will now add k − l + 1 individuals il, . . . , ik to this coalition one by one and

we will denote the intermediate coalitions by Yl, . . . , Yk, and then prove that Yk satisfies the

requirements. Let Xl−1 = X, and let

Xl = (X ∪ Yl−1) ∪
(⋃
i∈X

χ (Yl−1 ∪ {i})
)
. (B2)

Intuitively, we take the set of individuals which are either forbidden to join the government under

construction by our requirements (X) or are already there (Yl−1), and add all individuals which

can be in the same government with all individuals from Yl−1 and at least one individual from

Xl−1 = X. Now take some individual il ∈ I \ Xl (below we show that such individual exists)

and let Yl = Yl−1 ∪ {il}. At each subsequent step z, l + 1 ≤ z ≤ k, we choose zth individual for
the government under construction as follows. We first define

Xz = (X ∪ Yz−1) ∪

 ⋃
S⊂Yz−1:|S|=l−1;i∈X

χ (S ∪ {i})

 (B3)

and then take

iz ∈ I \Xz (B4)

(we prove that we can do that later) and denote Yz = Yz−1 ∪ {iz}. Let the last government
obtained in this way be denoted by Y = Yk.

We now show that φ (Y ) ∩ X = ∅. Suppose not, then there is individual i ∈ φ (Y ) ∩ X.
By (6) we must have that |φ (Y ) ∩ Y | ≥ l; take the individual ij with the highest j of such

individuals. Clearly, j ≥ l, so individual ij could not be a member of the initial Yl−1 and was

added at a later stage. Now let S be a subset of (φ (Y ) ∩ Y ) \ {ij} such that |S| = l − 1. Since

government φ (Y ) is stable and contains the entire S as well as i ∈ X (and i /∈ S because S ⊂ Y
and X ∩Y = ∅), we must have χ (S ∪ {i}) = φ (Y ). Consequently, if we consider the right-hand

side of (B3) for z = j, we will immediately get that φ (Y ) ⊂ Xj , and therefore ij ∈ Xj . But we

picked ij such that ij ∈ I \Xj , according to (B4). We get to a contradiction, which proves that

φ (Y ) ∩X = ∅, so φ (Y ) is a stable government which contains no member of X.

It remains to show that we can always pick such individual; we need to show that the

number of individuals in Xz is less than n for any z : l ≤ z ≤ k. Note that the union in the inner
parentheses of (B3) consists of at most

(k − l)
(
z − 1

l − 1

)
x ≤ (k − l)

(
k − 1

l − 1

)
x
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individuals, while z − 1 ≤ k − 1. Therefore, it is suffi cient to require that

n > x+ k − 1 + (k − l)
(
k − 1

l − 1

)
x

= x+ k − 1 + x (k − l) (k − 1)!

(l − 1)! (k − l)! .

Because we are dealing with integers, this implies (12), which completes the proof.

Part 3. This follows immediately by using Assumption 4 and setting ρ = x in (12), which

gives (13). �

Proof of Proposition 3. Part 1. By Assumption 2, 0 ≤ l ≤ k, so either l = 0 or l = 1. If

l = 0, then Proposition 1 (part 2) implies that the only stable government is G1, so φ (G) = G1

for all G ∈ G, where G1 = {i1}. If l = 1, then Proposition 1 (part 4) implies that any G is

stable.

Part 2. In this case, either l = 0, l = 1, or l = 2. If l = 0 or l = 2, the proof is similar to

that of part 1 and follows from Proposition 1 (parts 2 and 4). If l = 1, then {i1, i2} is the most
competent, and hence stable, government. By 1 (part 1), any other government containing i1 or

i2 is unstable. Hence, {i3, i4}, the most competent government not containing i1 or i2, is stable.
Proceeding likewise, we find that the only stable governments are {i2j−1, i2j} for 1 ≤ j ≤ n/2.

By the construction of mapping φ, either φ (G) = G or |φ (G) ∩G| = 1. If G = {ia, ib} with
a < b, then φ (G) will include either ia or ib. Now it is evident that φ (G) will be the stable

state which includes ia, because it is more competent than the one which includes ib if the latter

exists and is different. �

Proof of Proposition 4. The probability of having the most able player in the government

under the royalty system is 1. Indeed, government φ (G) for any G consists of l irreplaceable

members and k − l most competent members. Since l < k, this always includes the most

competent player. In the case of a junta-like system, there is a positive probability that a

government that does not include player i1 is stable. If
γ1−γ2
γ2−γn

is suffi ciently large, any government

that includes player i1 is more competent that a government that does not. The first part follows.

Now consider the probability that the least competent player, in, is a part of the government.

In a royalty system, this will happen if and only if one of the initial government members (who

is irreplaceable) is the least competent. In a junta-like system, if
γ1−γn−1
γn−1−γn

is low enough, a

government which does not the least competent player in will never transit to a government

that includes one. At the same time, it is possible that a government that includes the least

competent player will remove him (take, for example, the best government with one of the

players replaced by in). This means that the probability of having the least competent player

in the government is higher under royalty than under junta. This completes the proof. �
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Proof of Theorem 3. The proof follows immediately from Theorem 1 and the assumption

that changes are suffi ciently infrequent. Indeed, in the latter case, all the strict inequalities in

Definitions 1 and 2 are preserved. �

Proof of Proposition 5. Part 1. If l = 0, then by Proposition 1 for any G, φt (G) = Gt1,

where Gt1 is the most competent government
{
it1, . . . , i

t
k

}
.

Part 2. Suppose l = 1, then Proposition 1 provides a full characterization. There are

bn/kc ≤ n/k stable governments. Each consists of k individuals, so the probability that a random
new government coincides with any given stable government is 1/

(
n
k

)
= k!(n−k)!

n! . The probability

that it coincides with any stable government is bn/kc /
(
n
k

)
≤ n

k
k!(n−k)!

n! = (k−1)!(n−k)!
(n−1)! = 1/

(
n−1
k−1

)
.

The government will change to a more competent one if and only if it is unstable, which happens

with probability greater than or equal to 1− 1/
(
n−1
k−1

)
.

The most competent government will be installed if and only if after the shock, the govern-

ment contains at least 1 of the k most competent members. The probability that it does not

contain any of these equals
(
n−k
k

)
/
(
n
k

)
(this is the number of combinations that do not include

k most competent members divided by the total number of combinations). We have(
n− k
k

)
/

(
n

k

)
=

(n− k)!k! (n− k!)

k! (n− 2k)!n!

=
(n− k)!

(n− 2k)!

(n− k!)

n!

=
∏k

j=1

n− k − j
n− j .

Since each of the k factors tends to 1 as n → ∞, so does the product. Hence, the probability
that the most competent government will arise, πt (l, k, n | G, {ΓG}) = 1 −

(
n−k
k

)
/
(
n
k

)
, tends to

0 as n→∞.
Part 3. If l = k, then φt (G) = G for any t and G. Hence, the government will not

change. It will be the most competent if it contains k most competent individuals, which hap-

pens with probability 1/
(
n
k

)
. This is less than 1, which is the corresponding probability for

l = 0, so πt (l = k, k, n | G, {ΓG}) < πt (l = 0, k, n | G, {ΓG}). If k ≥ 2, it is also less than

the corresponding probability for l = 1: in the latter case, there are at least two govern-

ments which will lead to the most competent one:
{
it1, . . . , i

t
k

}
and

{
it1, . . . , i

t
k−1, i

t
k+1

}
, i.e.,

πt (l = 0, k, n | G, {ΓG}) ≥ 2/
(
n
k

)
> πt (l = 0, k, n | G, {ΓG}). This completes the proof. �

Proof of Proposition 6. Given the specific changes in {ΓG} in this case, the probability
of having the most competent government Gt1 (for any initial G and {ΓG}) is the probability
that at least l members of Gt are members of Gt1. This probability equals (from hypergeometric
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distribution):

πt (l, k, n | G, {ΓG}) =

∑k
q=l

(
k
q

)(
n−k
k−q
)(

n
k

) ,

and is strictly decreasing in l. �

Proof of Proposition 7. Part 1. Any such swapping (or, more generally, any transposition

σ, where σ (i) is the individual whose former competence individual i now has) induces a one-to-

one mapping that maps government G to government ρ (G): i ∈ ρ (G) if and only if σ (i) ∈ G.
By construction, Γt−1

G = Γtρ(G), and, by construction of mapping φ, φ
t−1 (G) = φt (ρ (G)) for all

G. If all transitions occur in one stage, and a shock triggers a period of instability, then with

probability 1 all shocks arrive at times t where government Gt−1 is φt−1-stable.

If abilities of only two individuals are swapped, then |G ∩ ρ (G)| ≥ k − 1 ≥ l. But G is

φt−1-stable with probability 1, hence, ρ (G) is φt-stable. Consider two cases. If ΓtG ≥ Γtρ(G),

then Γt
φt(G)

≥ ΓtG ≥ Γtρ(G). If ΓtG < Γtρ(G), then again Γt
φt(G)

≥ Γtρ(G), since there is a φ
t-

stable government ρ (G) which has with G at least l common members and the competence

of which is Γtρ(G). Hence, φ
t (G) is either ρ (G) or a more competent government. Hence, the

competence of government cannot decrease. However, it may increase, unless G contains k most

competent members. Indeed, in that case there exist i, j ∈ I with i < j such that i /∈ G and

j ∈ G. Obviously, swapping the abilities of these individuals increases the competence of G:

ΓtG > Γt−1
G , and thus the stable government that will evolve will satisfy Γtφ(G) ≥ ΓtG > Γt−1

G .

Since the probability of this swapping is non-zero, eventually the competence of government will

improve. Since there is a finite number of possible values of current government’s competence,

then with probability 1 the most competent government will emerge.

Part 2. This follows from an argument of part 1, taking into account that if abilities of

x individuals changed, then |G ∩ ρ (G)| ≥ k − bx/2c ≥ l. Indeed, if |G ∩ ρ (G)| < k − bx/2c,
we would have |G ∩ ρ (G)| ≤ k − b(x+ 1) /2c since the numbers of both sides are integers, and
thus |(G \ ρ (G)) ∪ (ρ (G) \G)| > 2 b(x+ 1) /2c ≥ x. However, all individuals in (G \ ρ (G)) ∪
(ρ (G) \G) changed their abilities, so the last inequality contradicts the assumption that no

more than x individuals did. This contradiction completes the proof. �

Proof of Theorem 5. Part 1. In part 1 of Theorem 4, we proved that for any ξ ∈ X
there exists a MPE in pure strategies, and from part 2 of Theorem 4 it follows that these MPE

constructed for different ξ ∈ X have the same equilibrium path of governments. The existence

of an order-independent equilibrium follows.

Part 2. Suppose, to obtain a contradiction, that order-independent MPE in pure strategies

σ∗ is cyclic. Define mapping χ : G → G as follows: χ (G) = H if for any node on equilibrium

path which starts with government Gt = G and νt = u, the next government Gt+1 = H. Since
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the equilibrium is in pure strategies, this mapping is well defined and unique. The assumption

that equilibrium σ∗ is acyclic implies that there is a sequence of pair-wise different governments

H1, H2, . . . ,Hq (where q ≥ 2) such that χ (Hj) = Hj+1 for 1 ≤ j < q and χ (Hq) = H1. Without

loss of generality, assume that H2 has the least competence of all governments H1, H2, . . . ,Hq.

If q = 2, then the cycle has two elements, of which H2 is the worse government. However, this

implies that H2 cannot defeat H1 even if it wins the primaries, since all players, except, perhaps,

those in H2 \ H1, prefer H1 to an eternal cycle of H1 and H2. This immediate contradiction

implies that we only need to consider the case q ≥ 3.

If q ≥ 3, then, by the choice of H2, ΓH1 > ΓH2 and ΓH3 > ΓH2 . Without loss of generality,

we may assume that the protocol is such that if the incumbent government is H1, H3 is put at

the end (if H3 is nominated); this is possible since σ∗ is an order-independent equilibrium. By

definition, we must have that proposal H2 is nominated and accepted in this equilibrium along

the equilibrium path.

Let us first prove that alternative H3 will defeat the incumbent government H1 if it wins

the primaries. Consider a player i who would have weakly preferred H2, the next equilibrium

government, to win over H1 if H2 won the primaries; since H2 defeats H1 on the equilibrium

path, such players must form a winning coalition in H1. If i /∈ H2, then H2 brings i the lowest

utility of all governments in the cycle; hence, i would be willing to skip H2; hence, such i would

be strictly better off if H3 defeated H1. Now suppose i ∈ H2. If, in addition, i ∈ H1, then he

prefers H1 to H2. Assume, to obtain a contradiction, that i weakly prefers that H3 does not

defeat H1; it is then easy to see that since he prefers H1 to H2, he would strictly prefer H2 not

to defeat H1 if H2 won the primaries. The last case to consider is i ∈ H2 and i /∈ H1. If β is

suffi ciently close to 1, then, as implied by Assumption 3′, player i will either prefer that both

H2 and H3 defeat H1 or that none of them does. Consequently, all players who would support

H2 also support H3, which proves that H3 would be accepted if nominated.

Suppose to obtain a contradiction that H3 is nominated in equilibrium. Then H2 cannot

win the primaries: in the last voting, H2 must face H3, and since, as we showed, only members

of H2 may prefer that H2 rather than H3 is the next government, H3 must defeat H2 in this

voting. This means that in equilibrium H3 is not nominated.

Suppose next that if all alternatives were nominated, some government G wins the primaries.

It must then be the case that G defeats H1: indeed, if instead H1 would stay in power, then

G 6= H3 (we know that H3 would defeat H1), and this implies that in the last voting of the

primaries, H3 would defeat G. Let us denote the continuation utility that player i gets if some

governmentH comes to power as vi (H). If there is at least one player with vi (G) > vi (H2), then

this player has a profitable deviation during nominations: he can nominate all alternatives and

ensure that G wins the primaries and defeats H1. Otherwise, if vi (G) ≤ vi (H2) for all players,
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we must have that vi (G) < vi (H3) for a winning coalition of players, which again means that G

cannot win the primaries. This contradiction proves that for the protocol we chose, H2 cannot

be the next government, and this implies that there are no cyclic order-independent equilibria

in pure strategies.

Part 3. The proof is similar to the proof of part 2. We define mapping χ in the same way

and choose government H such that χ (χ (H)) 6= χ (H), but χ (χ (χ (H))) = χ (χ (H)). We then

take a protocol which puts government χ (χ (H)) at the end whenever it is nominated and come

to a similar contradiction.

Part 4. This follows from part 3, since the only transition may happen at t = 0. �

Proof of Theorem 6. Part 1. If δ is suffi ciently small, then the ordering of continuation

utilities for each player at the end of any period is the same as before, and the equilibrium

constructed in the proof of part 1 of Theorem 4 proves this statement as well.

Part 2. If δ is suffi ciently small, the proof of Theorem 5 (parts 2 and 3) may be applied

here with minimal changes, which are omitted. �
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